
Structuring Your Content
& Projects for Continuous
Localization

GUIDE

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 2

Introduction: Lessons from 10+ Years of Taking
Companies Global
•	 Learning Challenges to Overcome Them

•	 A Guide for Fast, Tech-Focused Companies

•	 What Not to Do: Common Software Localization Mistakes

Part 1: Internationalization
•	 The Importance of Internationalization

•	 Finding & Fixing Internationalization Bugs

•	 The Software Architecture Checklist

Part 2: Structuring Your Files
•	 Organizing Your Projects & Resources

•	 Building a Global Content Repository

•	 Structuring Your Files

•	 Common Localization File Formats

Part 3: Workflows & Integrations
•	 Finding the Best Approach for Your Team

•	 How to Integrate with Your TMS

Wrap-Up
•	 The Future of Localization: Continuous & Cloud-Based

•	 About Transifex Native

Table of Contents

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 3

Lessons from 10+ Years of
Taking Companies Global

We put together this guide for fast-moving companies like you — to
empower your team to understand and leverage the power of continuous
localization to overcome all those challenges that come with the outdated
form of localization (a lot of manual files and email chains). In this guide, we
break down the ins and outs of effectively structuring your content and
projects for continuous localization, so you can finally localize at the speed
of your content and product creation.

Learning Challenges
to Overcome Them
In our journey building this platform,
we’ve learned firsthand from global
customers the pain points they face
when applying localization (L10n)
processes to their modern software
development. From properly keeping
track of content changes to making
sure each team member can effectively
focus on their own section of the
workflow (instead of having developers
grapple with issues like dealing with
files sent manually via email because
translators had trouble using a
repository)…the list of challenges gets
quite long.

Introduction

“...you can
finally localize
at the speed
of your content
and product
creation...”

A Guide for Fast, Tech-Focused Companies

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 4

Transifex: 10+ Years of Taking Companies Global
We founded Transifex with the mission to break down language
barriers. How we build products has evolved greatly over the
last decade, with faster release cycles transforming the pace of
localization that companies are seeking. Today, every company is
a fast-moving company — that’s what software enables. And we
want our content to be localized as quickly as its created.

We felt we needed to build a platform that would not only support
frequent changes of content, but also create fluid workflows that
removed all the bureaucracy and red tape that comes with trying
to collaborate across the many dispersed roles of a localization
team. The result: our ever-evolving Transifex platform and
resources like this guide.

Common Software
Localization Mistakes
Before we dive into the nitty gritty of continuous localization set up, let’s
start with a ‘what not to do’ section. Whether you are just embarking on
your localization journey or trying to localize continuously, familiarize
yourself with the list below to set a baseline of pitfalls to avoid.

1.	 Not taking i18n seriously.
Failing to apply internationalization
(i18n) best practices from the beginning
can be a huge setback that results
in a lot of technical debt due to the
addition of costly quality control
cycles that will delay – or even prevent

– you from getting your content
properly localized altogether.

“...An increasing
amount of back
and forth will be
required to get
things done....”

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 5

Companies that have a process
that includes a fair amount of
copy & paste into spreadsheets
or cloud storage folders (which
will get replicated into numerous
languages) will learn that things
can quickly become very unman-
ageable. An increasing amount of
back and forth will be required to
get things done.

To be fair, the status quo of inter-
nationalization practices that
developers need to follow for
software development today is
part of the limitations we see on
day-to-day localization processes.
Programming language frame-
works are looking at things only
through a technical lens, and
often not giving the necessary
attention to interoperability
across platforms or to how
people will handle content from
the linguistic point of view.

2. Lack of tools to
support efficiency and
collaboration.
Localization is an inherently
cross-departmental process that
requires timely collaboration,
especially when there are tight
deadlines to meet. When the
content to be localized is floating
around without a consolidated
place to manage it, efficiency will
go down drastically as the org-
anization grows.

People can’t be effective if the
process and tools in place don’t
allow them to be. Decreasing com-
plexity around how to find the
correct files, and helping people
to interface with content more
easily will allow you to streamline
the process. Issues will always
come up (such as a string not
being properly pluralized by a
junior developer) but making
sure different people can easily
collaborate to resolve them, and
even decrease the number of
issues, is at the core of what will
make localization ultimately
successful.

“People can’t be
effective if the
process and tools
in place don’t allow
them to be....”

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 6

3. Lack of control over
 content

We often see the mindset of the
“one-off project” being applied to
localization, but having control
over your organization’s cont-
ent is also key. It gives you the
opportunity to manage the
state of your content on your
own terms and keep track of
your translations regardless
of where they originate from.
As your team gets better at
releasing content and features
faster, you need to find ways
to track the state/status of
each content, which might be
coming from different locations
(web, marketing, iOS, Android,
databases).

4. Not providing enough
 context to produce
 quality translations.

When talking about your brand
it’s always important to make
sure your localized content
has the right tone and style.
Context should be managed
together with your content and

most importantly, it should be
passed on in a very streamlined
way. The key is to set things up
for success in the first place so
that you can catch fewer issues
earlier in the process, rather
than dealing with them later
(when it’s too late).

Now that we’ve walked through
the common mistakes, you know
what to avoid and are ready to
start your journey to setting up
the best continuous localization
workflows for your projects
and teams.

“The key is to set
things up for success
in the first place so
that you can catch
fewer issues earlier
in the process....”

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 7

Internationalization (i18n)
Part 1

Before you localize, you must make sure
to adapt your software to enable full
multilingual capabilities. This is called
internationalization and its the process
of adapting your software so that it can
properly and scalably support formats
based on languages and locales. It is
important to internationalize early in
the process so that you create ongoing
processes that will scale and integrate
into all future sprints and releases of
translated content.

 In short, internationalization lays the
foundation of having well-structured
content and workflows from design
to development — across locales and
languages.

Finding & Fixing i18n Bugs
As you internationalize, bugs will inevitably arise. When you’re working
with thousands to millions of lines of code, these issues will undoubtedly
be difficult to find. Here’s where continuous localization comes in to help
simplify the process. Continuous localization enables you to check the new
source code as it is written so that both i18n and L10n are seamlessly part
of your agile development cycles — saving you time and money.

The Importance of
Internationalization (i18n)

Remember

Don’t treat i18n as
a separate step in
your development
process, but rather
as a foundational
function that should
be integrated into
every step of your
localization design
and development
workflows.

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 8

The Software Localization Checklist
P

H
A

S
E

 O
N

E
P

H
A

S
E

 T
W

O
P

H
A

S
E

 T
H

R
E

E

The key phases and steps to keep in mind as you lay your i18n foundation and

build continuous L10n on top of it.

Review your application framework before you externalize any strings to make
sure your software can support your internationalization and localization efforts.

Review your software requirements and architecture.

Determine whether or not your current database requires changes.

Determine if you will need to consider third-party libraries for your content.

Plan ahead for text in other languages. Translated text can take more or less
space (and even read in the opposite direction!) depending on the target language.

Determine how locale(s) will be selected and whether you will set a fallback.

Determine how you will support your target locales within your application’s
programming languages.

Evaluate which locale-specific changes will need to be made within your
database and add any necessary locale frameworks.

Externalize your strings with the following in mind:

Code your strings with global expansion in mind. We recommend Unicode/
UTF-8 as the best coding option (unless you are working with Asian languages

that require UTF-16). Replace locale-limited functions and code.

Avoid hard-coded and concatenated strings, to make sure that you can easily
automate your localization processes and also make sure you don’t switch up
any word order that could change the meaning of translated content in the

target language.

Provide self-explanatory comments for your strings, which (believe us) will
go a long way for translation accuracy and also overall workflow (read: less
back-and-forth communication across teams, which means more time saved
and fewer headaches!)

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 9

Structuring Your
Content & Projects

Part 2

Organizing Your Projects & Resources
Projects can be organized in any way you like. Think about the projects as
directories and resources as files. Here are a few things to keep in mind:

•	 Group related content into a single project. For example, one project for
your iOS app, and another for your website. Each project has certain
settings and configuration options (e.g. translation team, translation
memory, workflow settings).

•	 Create separate projects for content that needs to be translated to
separate sets of languages. Each of your projects will be translated to
one or more target languages, so creating separate projects will help
with organization. If you really want to have content in the same project
which needs to be translated into different languages, you will need to
tell your translators not to translate those files into some of

 the project’s languages.

•	 Assign each project to a specific team of translators and reviewers. If
you have two resources that you need translated by 2 different teams,
put them in separate projects.

Building a Global Content Repository
After you’ve gotten everything organized, it’s time to start thinking about
how to build a global content repository. In today’s software development
workflow, there are various ways to manage your content. With modern
localization technology like Transifex Native, you can leverage the power
that is building a modern i18n library which, instead of files, uses a centr-
alized, cloud-based global content repository. In practice, this means

‘Fileless’ resources
You and your teammates can interact with the content
without the limitations of physical files.

Quality & consistency
Having one main repository means that you can implement
things like Translation Memory to ensure translation
consistency across content and projects.

Ease of editing
With functionalities like “Search Strings” in Transifex, you
can now search and edit content and projects as a whole
regardless of how you’ve structured things.

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 10

that source content and translations are automatically synced to a global
content repository that’s accessible at any time.

Here are just some of the benefits of building and using a global content
repository:

Structuring Your Files
If you are using files, then one file is associated with one resource. In
certain cases, you might have thousands of phrases in your database which
can be grouped in different ways into resources. This is really up to you! You
can have one big resource or multiple smaller ones.

Here are the advantages of each:

•	 One big resource will make it easier for translators to go over the phrases.

•	 Multiple smaller resources will allow you to further group your phrases
in some logical way and to have multiple same phrases which need to be
translated in different ways, etc.

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 11

Example Structure:

Project: Documentation

Resource: FAQ

Resource: About

Resource: Introduction

Project: Android app

Resource: UI labels specific to customer X

Resource: Translations of city names showing in the app

Resource: UI phrases

Project: User-generated content

Resource: Customized menu label

Resource: User Comments

Resource: Product Reviews

NOTE:

In this example, you could also
argue that the resource type “UI
labels specific to customer X” might
be better grouped on a separate
project, so that they’re all together.
It’s really up to you. Here’s some
other cases and structures that
we’d recommend:

If you have just 1-2 customers,
leave it under the project.
•	 If you have 100 customers, put

it under a separate project.
•	 If the number of labels per cus-

tomer is just a couple, instead
of having 100 resources of
2phrases, you might want to
have just one resource with 200
phrases and use tags to distin-
guish each customer.

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 12

Common Localization File Formats

Gettext (.po)

XML Localization Interchange
File Format (.xliff)

No matter how distinct they may
seem, all localization frameworks
have one thing in common: they
need a way to store localized text.
For a localization effort that’s
entirely self-contained, it doesn’t
matter how your translations are
stored. However, if you plan to
integrate your localization effort
with outside tools or translators,

the format your translations are
stored in can quickly become a
barrier to progress.

 Here are some the more common
localization file formats and established
best practices. Whether you’re starting
a new project or looking to integrate
an existing localization effort, knowing
which file formats to target can save
you time and effort.

Gettext is a popular internationalization framework used in a wide variety of
programming languages and operating systems. In addition to supporting a
diverse number of languages, language rules, and locale-specific settings, it’s
supported by a large number of tools such as Poedit, gted, and Virtaal.

 A key benefit of gettext is standardization. GNU gettext is one of the more
popular open-source implementations of gettext and has been ported to
PHP, Python, Perl, and more. WordPress, Ubuntu, and LibreOffice use get-
text to provide translations.

XLIFF is an industry standard for-
mat based on XML. XLIFF was de-
signed specifically for the localiza-
tion industry as a bridge between
platforms and tools, such as your
application and a localization ser-
vice. XLIFF also serves to

“No matter how
distinct they may
seem, all localization
frameworks have one
thing in common...”

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 13

standardize the way information
is transferred throughout the
localization process, ensuring
interoperability across different
workflows. Even applications
such as Microsoft SharePoint rely
on XLIFF to transfer localization
information to and from translators.
 Like gettext, XLIFF defines a

standard format for storing
localized text. Your team can use
tools such as the Translate Toolkit
to generate and convert XLIFF files.
Not only does this help speed up
the localization process, but it helps
ensure your XLIFF files will be
complete and parsable by services
such as Transifex.

Extensible Markup Language (.xml)

Unlike most of the other formats on this list, XML is a language used
to encode data within a document. Whereas most formats provide a
rigid structure for defining your localization data, the structure of an
XML document is defined within the document itself. This means one
XML document can have a drastically different structure than another
document even if both files use a completely valid syntax.

 Because of this, XML forms the base of many formats such as Windows
resource files (.resx, .resw), Android string resource files (.xml), and the
XML Localization Interchange File Format (.xliff). Although these formats use
the same language, they implement it in slightly different ways. For example,
the following XML defines the string “Hello world!” with an ID of “hello_world”
in Android:

The following XML shows the same concept implemented in a Windows
desktop application:

<string name=”hello_world”>Hello world!</string>

<data name=”hello_world” xml:space=”preserve”>
	 <value>Hello world</value>
</data>

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 14

Although any platform capable of interpreting XML can parse these files, the
platform has to know how the XML document is structured. This is why some
localization platforms support some XML-based format, but not others.

As with XML, JSON is a general-purpose
format for transmitting data between
applications. JSON supports many of the
same benefits as XML, such as a flexible
and dynamic structure that can be read
by any JSON interpreter (of which there
are many). JSON is also arguably more
human-readable than XML, making it
easier for developers and translators to
work with.

XML Localization Interchange
File Format (.xliff)

Java Properties (.properties)

A common problem that many localization teams experience with JSON is
invalid data types. Values stored in a JSON file can consist of multiple data
types including strings, numbers, and empty (or null) values. For localization
purposes, we recommend only storing non-empty string values by
surrounding them in double quotes.

 Lastly, complex, nested JSON objects can cause problems for certain
parsers. A value stored in JSON can be a string, a number, an empty value,
a collection of strings or numbers, or even another JSON document. Some
localization frameworks may not support complex structures without first
requiring additional parsing rules to be defined. JSON is famously used by
MediaWiki to store over 23,000 translations.

“we recommend
only storing
non-empty
string values by
surrounding them
in double quotes.”

Properties files are commonly used in Java applications to store application
configuration settings. They’re commonly used for localization due to their

https://diff.wikimedia.org/2014/04/10/mediawiki-localization-file-format-changed-from-php-to-json/

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 15

simplicity and readability. When used for localization, a property file con-
sists primarily of two strings: an identifier followed by the localized text.
Different formats (such as Mozilla localization files) may provide different
features, but they all follow the same basic structure.

 A unique point to properties files is that they require ISO-8859-1 (or
Latin-1) encoding as opposed to the UTF-8 encoding common to most
other formats. While this won’t make a significant impact on your use of
properties files, it is something for developers to be aware of.

The CSV format is perhaps the simplest format for storing localization
information. It consists of groups of two strings separated by a comma,
with each group placed on a new line. CSV files are extremely straightforward,
easy to parse, and easy to work with, although their flexibility is limited when
compared with other formats. Magento uses CSV files to manage localized

Comma-Separated Values (.csv)

When structuring your files,
make sure you are using standard
resource file formats for your
localizable text. This will ensure
that the localized software performs
exactly as it does in your source
language and therefore reduce
demands made to your developers
during the localization process.
The result? Much easier and
quicker automation of the

translation process, reducing time
(that would have been dedicated
to engineering and QA hours) and
therefore lowering costs.

 We recommend using standard
file formats like: java, .net reex,
traditional windows resources, and
xml. If you’re working in a custom
developer environment, use a
consistent file structure like XLIFF.

Rule of Thumb:
Use Standard Resources

https://developer.mozilla.org/en-US/docs/Archive/Add-ons/Add-on_SDK/Tutorials/l10n
https://docs.transifex.com/formats/magento-csv/#magento-csv

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 16

While the file format you use is more likely to be determined by your
localization framework, it’s good to know what’s out there. Transifex
supports over 25 localization file formats in addition to those listed above.
You may also be able to convert an existing format to another using tools
such as Translate Toolkit. For more information, contact us with your
localization questions.

Other Considerations

Workflows & Integrations
Part 3

Before you dive into this section,
remember that each company and
localization team has its own needs and
workflows. So, it’s important for you to
be aware of the different approaches,
try them out, and see what best fits
your needs. To test things out, follow
these 3 steps:

•	 Create different files for each
version of the app/website.

•	 Update the existing file with any
newly inserted strings.

•	 Create a different project/workflow
for different content types you want
to localize (documentation, website,
app etc).

Finding the Best Approach for Your Team:
Try, Test, & Try Again

Other Integrations Making
Developers’ Lives Easier

After you’ve integrated
with your TMS, and if that
TMS happens to be Tran-
sifex, here are some fun
integrations and features
that help ease workflows:

•	 Slack
•	 Amazon Translate
•	 GitHub
•	 KantanMT
•	 Bitbucket
•	 LexiQA
•	 Dark Mode

https://docs.transifex.com/formats/introduction
https://docs.transifex.com/formats/introduction
https://docs.transifex.com/formats/introduction
http://toolkit.translatehouse.org/
https://www.transifex.com/contact/
https://www.transifex.com/contact/

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 17

Before you start localizing, it’s important to have an automation in place and
spend time on properly setting things up before starting your localization
process. This way, you won’t need to worry about localization after that,
reducing time and costs. Here’s what you need to consider:

Integrating with your TMS

•	 How the generated content will
be pushed to your TMS. An API is
required to set up the connection
between the two systems.

•	 How the translations will be pulled
from the TMS once these are
done. Except for the API is also
vital to have a way to get notified
that the translations are done.
Checking manually when the
translations are completed is not
an efficient way and introduces
more manual work and delays
which ideally should be avoided.

•	 How engineers and localization
managers will communicate
with the translators and address
their questions. If engineers, for
example, do not have access to
the TMS (this is a common case), it
is important to integrate the tool
the engineers use and the TMS so
that: a) any questions submitted
by translators will be shared with
engineers immediately, and b) any
answers provided by engineers
will be shared with translators
immediately.

Above all, don’t let your company or team size stop you. Even small companies
invest time (if they have available engineering resources) in automating this
process and integrating with their TMS.

“Above all, don’t let your company or team size
stop you. Even small companies invest time in
automating this process...”

Transifex | Structuring Your Content & Projects for Continuous Localization 		 			 18

The Future of Localization
Wrap Up

Continuous & Cloud-Based
To date, the localization world follows
some basic internationalization
and localization principles that
have not changed in decades. For
example, the idea that content
to be translated should live in a
separate directory in your code,
within a special file format, which is
not consistent across different
programming language frameworks,
makes reusability of translations
across different platforms a real
challenge.
 Without rethinking the
underlying architecture applied
to software localization, we are
coming to the edge of what we
can do to keep adding substantial
value to the process. In this time
dominated by cloud computing
architecture, there is a big
potential for internationalization
and localization to become first-
class citizens of the software
development stack, instead of
an afterthought.
 To usher in the next era of
continuous localization, we must
take a step back to reevaluate how

software localization can evolve
to improve these processes that
were long overdue for big changes.
For example, we see cloud-based
systems — like that which is util-
ized by continuous localization
processes — changing the game
for developers by enabling them
to automatically sync repository
changes, control team roles and
user access to content, and specify
content to be translated in an
online letter.
 We’ve come a long way since the
early days of localization and will
continue to work to build solutions
to alleviate the localization pain
points for developers and the
localization teams in which they
play essential roles.

“we must take a step
back to reevaluate how
software localization
can evolve to improve
these processes”

Go Global with
Continuous Localization

About Transifex Native
Here at Transifex, we have create a solution that is transforming the fut-
ure of localization: Transifex Native. To learn more about how Transifex is
transforming software localization, putting global content management of
the center of i18n and L10n, read our Transifex Native Series.

To learn more about continuous localization and sign up for your free trial,
visit www.transifex.com/native.

https://www.transifex.com/blog/category/tx-native/
https://www.transifex.com/native/

